Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8413, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600137

RESUMO

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Assuntos
Antioxidantes , Probióticos , Streptococcus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Linoleico , Lipopolissacarídeos , Probióticos/metabolismo , Radical Hidroxila , Superóxido Dismutase , Ácido Láctico/metabolismo
2.
Poult Sci ; 102(10): 102919, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494806

RESUMO

The effects of substituting Bacillus subtilis, Astragalus membranaceus, and enzymes for aureomycin to improve the growth performance of broilers during specific phases were studied to develop alternatives to in-feed antibiotics and decrease drug residues in meat food and antibiotic resistance. Six hundred one-day-old broilers were randomly assigned to 5 groups. Broilers in the control group were supplied with basal diets (CT), and those in the remaining 4 groups were supplied with feed containing aureomycin premix (AU), B. subtilis powder (BS), A. membranaceus root powder (AM), and enzyme compound powder (EN), respectively. Compared to the control group, broilers in the other groups exhibited better growth performance during different phases. Microbial analysis of cecal contents suggested that treatment with BS or EN significantly increased the abundance of Lactobacillus or Bifidobacteria but inhibited Escherichia coli or Clostridium welchii; however, these bacteria were suppressed by AU treatment except C. welchii. The digestibility of the feed in vitro was significantly enhanced by adding BS or EN to the feed, consistent with findings for growth performance. In conclusion, dietary supplementation with 3 additives could improve the growth performance of broilers during specific phases. Future studies should focus on designing suitable schedules to partially replace in-feed antibiotics.


Assuntos
Clortetraciclina , Probióticos , Animais , Probióticos/farmacologia , Galinhas , Antibacterianos/farmacologia , Pós , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais/análise
3.
Chemosphere ; 161: 89-95, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27421105

RESUMO

F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 µM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1ß. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1ß via NF-κB pathway in mouse peritoneal macrophages.


Assuntos
Citocinas/genética , Fluoretos/toxicidade , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , RNA Mensageiro/genética , Fator de Transcrição RelA/metabolismo , Animais , Adesão Celular , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Transporte Proteico , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA